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CONSPECTUS: The variability of chemical bonding in open-shell transition-metal complexes 
both motivates their study as functional materials and catalysts but also challenges conventional 
computational modeling tools. Here, tailoring ligand chemistry can alter preferred spin or 
oxidation states as well as electronic structure properties and reactivity, creating vast regions of 
chemical space to explore when designing new materials atom by atom. Although first-principles 
density functional theory (DFT) remains the workhorse of computational chemistry in 
mechanism deduction and property prediction, it is of limited use here. DFT is both far too 
computationally costly for widespread transition-metal chemical space exploration and also 
prone to inaccuracies that limit its predictive performance for localized d electrons in transition-
metal complexes. These challenges starkly contrast with the well-trodden regions of small 
organic molecule chemical space where the analytical forms of molecular mechanics force fields 
and semi-empirical theories have for decades accelerated the discovery of new molecules, where 
accurate DFT functional performance has been demonstrated, and where gold standard methods 
from correlated wavefunction theory can predict experimental results to chemical accuracy.  
 The combined promise of transition-metal chemical space exploration and lack of 
established tools has mandated a distinct approach. In this Account, we will outline the path we 
charted in transition-metal chemical space exploration starting from the first machine learning 
(ML, i.e., artificial neural network, ANN, or kernel ridge regression, KRR) models and 
representations for the prediction of open-shell transition-metal complex properties. The distinct 
importance of the immediate coordination environment of the metal center as well as the lack of 
low-level methods to accurately predict structural properties in this coordination environment 
first motivated and then benefited from these ML models and representations. Once developed, 
the recipe for prediction of geometric, spin state, and redox potential properties was 
straightforwardly extended to a diverse range of other properties, including in catalysis, 
computational “feasibility”, and in the gas separation properties of periodic metal-organic 
frameworks. Interpretation of selected features most important for model prediction revealed 
new ways to encapsulate design rules and confirmed that models were robustly mapping 
essential structure–property relationships. Encountering the special challenge of ensuring that 
good model performance could generalize to new discovery targets motivated how to best carry 
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out model uncertainty quantification (UQ). Distance-based approaches, whether in model latent 
space or in carefully engineered feature space, provided intuitive measures of domain of 
applicability. With all of these pieces together, ML can be harnessed as an engine to tackle the 
large-scale exploration of transition-metal chemical space needed to satisfy multiple objectives 
using efficient global optimization methods. In practical terms, these artificial intelligence tools 
brought to bear on the problems of transition-metal chemical space exploration have resulted in 
ML-model assessments of large, multi-million compound spaces in minutes and validated new 
design leads in weeks instead of decades.  
  

Key references 

• Janet, J. P.; Kulik, H. J. Resolving Transition Metal Chemical Space: Feature Selection 

for Machine Learning and Structure-Property Relationships. J. Phys. Chem. A 2017, 121, 

8939-8954.1 A systematic representation tailored for transition metal chemistry was 

introduced and used to train machine learning models to predict spin-splitting energies, 

redox potential, and bond lengths of transition-metal complexes. Analysis of feature-

selected subsets revealed length and nature of design principles for each property.  

• Janet, J. P.; Chan, L.; Kulik, H. J. Accelerating Chemical Discovery with Machine 

Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural 

Network. J. Phys. Chem. Lett. 2018, 9, 1064-1071.2 An artificial neural network (ANN) 

trained on an ad hoc feature set for transition-metal chemistry was used to discover spin 

crossover complexes. A space of > 5k transition-metal complexes was explored with a 

genetic algorithm in which the objective function was modified by feature-space distance-

derived uncertainty quantification (UQ) penalty. 

• Janet, J. P.; Duan, C.; Yang, T.; Nandy, A.; Kulik, H. J. A Quantitative Uncertainty 

Metric Controls Error in Neural Network-Driven Chemical Discovery. Chem. Sci. 2019, 

10, 7913-7922.3 A UQ metric derived from the distance of lead compounds to available 

training data in the latent space of a neural network was introduced, demonstrating 



3 

 

superior performance to alternative quantities such as ensembles for model exploration 

or exploitation applications in transition-metal chemistry. 

• Janet, J. P.; Ramesh, S.; Duan, C.; Kulik, H. J. Accurate Multiobjective Design in a 

Space of Millions of Transition Metal Complexes with Neural-Network-Driven Efficient 

Global Optimization. ACS Cent. Sci. 2020, 6, 513-524.4 The multiobjective optimization 

of redox potential and solubility for redox couples was carried out in a space of > 2.8M 

hypothetical transition-metal complexes. Efficient global optimization was employed in 

conjunction with the latent space distance UQ metric and a multi-task ANN trained on 

systematic representations for transition-metal chemistry. 

1. Introduction. 

 Rapid prediction of properties of transition-metal complexes with computational 

chemistry modeling tools is not a new objective.5-8 Challenges for carrying out experiments on 

open-shell transition-metal complexes as well as in interpreting their outcomes have meant that 

computational and theoretical tools have been indispensible since the early days9 of research in 

open-shell transition-metal chemistry. However, the first computationally affordable tools from 

molecular mechanics (MM)10-12 or semi-empirical quantum mechanics (SQM)13 models failed to 

generalize for open-shell transition-metal chemistry. Although some promising models have 

been developed to enable specific property predictions over a range of similar materials,14 to 

capture ligand field and Jahn–Teller effects15-16 (e.g., by incorporating terms from the angular 

overlap model17), or to be general enough to work across a large number of elements10, these 

methods have not been widely adopted for predictive modeling of open-shell transition-metal 

chemistry. In more computationally demanding, first-principles (e.g., density functional theory 
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or DFT) methods, small errors are magnified by subtle imbalances in the treatment of localized d 

or f electrons18-20 of transition-metal complexes.  

 The challenges for modeling open-shell transition-metal chemistry arise due to the same 

quantum mechanical properties that make them desirable targets for materials design, e.g., as 

catalysts or sensors. Mid-row transition metals have variable, low-lying electron configurations 

from multiple oxidation and spin states that favor a range of coordination environments (Figure 

1). Changing the electron configuration of a transition-metal complex will change geometric, 

electronic, optical, and magnetic properties in a non-linear, often step-wise fashion without 

changing a graph/connectivity-based representation of the complex (Figure 1). This lack of 

smooth variation in properties likely explains the challenges for generalizing SQM or MM 

methods to open-shell transition-metal chemistry, whereas the degeneracy of slightly different 

electronic states explains lack of error cancellation in first-principles DFT.18-20 

 
Figure 1. Combinatorial challenges for enumerating transition-metal chemical space depicting 
the interplay between choice of metal (bottom), oxidation state (left), spin state (top), and ligand 
chemistry (right) for transition-metal complexes.  
 

 Taking a step back to examine the “small molecule universe”21-22 of closed-shell organic 

molecules, we see a vast space but one that can be readily traversed with computational 
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chemistry because efficient methods are available (i.e., SQM or MM) and more-demanding first-

principles methods (i.e., DFT or wavefunction theory) can achieve chemical accuracy, in part 

due to the straightforward mapping between structure and function that paved the way for 

impressive machine learning (ML) model performance.23 In comparison, it is evident that the 

number of possible metals, oxidation, spin states, and ligands that can be used to build up a 

transition-metal complex creates a vast chemical space with a wide range of sizes and 

coordination environments (Figure 1).6,24-25 Only a small fraction of this space has likely ever 

been synthesized and characterized (e.g., 500k inorganic structures in the Cambridge Structural 

Database).  

 Although dependence of transition-metal complex properties on structure is highly non-

linear, predictive heuristics (e.g., ligand field theory9,26) provide evidence that structure–property 

relationships are suitable tasks for machine learning. For example, weak-field ligands (e.g., 

ammonia) in mid-row, mononuclear octahedral 3d transition-metal complexes favor high-spin 

states, whereas strong-field ligands (e.g., carbonyl) prefer low-spin states. However, recovering 

this heuristic with first-principles, physics-based models (e.g., DFT) is not always 

straightforward.18-19,27-29 Encountering these challenges motivated a distinct approach from our 

group. To build data-driven models, we compromised between the amount of data we could 

generate with the accuracy of the physics-based models (i.e., from DFT) by sampling a range of 

their parameters (i.e., exchange-correlation functionals).30-31 We collected data and developed 

representations tailored for transition-metal chemistry to build the first predictive artificial neural 

network (ANN) models for open-shell transition-metal complex properties such as spin splitting 

energy, redox potential, and metal-ligand bond length.1,31 Once this recipe was developed, we 

generalized it to tasks as far-ranging as predicting calculation outcomes32-33, catalytic activity34, 
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or gas uptake in metal-organic frameworks35 (MOFs). Analysis1,30 of the most essential features 

of these models recapitulated well-known heuristics9,26 but also revealed exceptions to 

conclusions previously reached on small34 or imbalanced35 data sets. 

 Despite these early successes, our goal of leveraging such models to enable chemical 

discovery was not yet reached. Simply having a predictive ML model trained on the modest data 

set sizes we used early on (ca. 300–1000 complexes) does not ensure that ML models (e.g., 

ANNs) will generalize to new chemical spaces. We thus investigated how to quantify uncertainty 

in our ML models.3,31 With evolutionary algorithms informed by model uncertainty, we set out to 

define and explore large spaces (i.e., thousands to millions) of theoretical compounds to discover 

promising new leads.2,36 Early demonstrations on unearthing new spin crossover (SCO) 

complexes2 and tailoring band gaps36 were promising, accelerating the discovery of lead 

compounds by reducing the number of time-consuming calculations needed. Aiming to fully 

realize the opportunities of ML-accelerated discovery in transition metal chemistry, we carried 

out the simultaneous optimization of solubility and redox potential for redox flow battery 

materials in a space of millions of theoretical compounds, obtaining convergent design rules in 

weeks rather than decades.4 While our efforts thus far have only sampled a small fraction of 

feasible transition metal chemical space, they represent a much larger portion than could ever be 

addressed by traditional experimental or computational approaches. In the remainder of this 

Account, we summarize the key considerations in demonstrating and extending our approach to 

outstanding challenges in open-shell transition-metal complex design.  

2. Curating Data Sets. 

 Before embarking on the incorporation of data-driven tools into chemical discovery, it is 

useful to consider three interrelated concerns: data set (i.e., how much and what kind), model 
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(i.e., how complex or interpretable), and representation (i.e., tailored or general). While we have 

already reviewed some practical aspects of these tradeoffs in initial ML model training,37 the task 

of finding novel materials motivates a closer look at how ligands are selected for transition-metal 

complex discovery and data set generation. The most straightforward strategy is to employ a 

range of common ligands, such as those known from the spectrochemical series (Figure 2). By 

restricting complexes of these ligands to reasonably high symmetry (i.e., no more than 1 or 2 

equatorial or axial ligand types), even with a small number (ca. 35) of unique ligand types, one 

can rapidly generate hundreds of transition-metal complexes that sample a range of denticities, 

charges, coordinating atom types, and sizes. When first building ML models,1,31 that was our 

primary strategy to ensure realism. However, by choosing common ligands, the wide range of 

complex sizes meant that generating equilibrium properties (i.e., from geometry optimizations) 

required significant computational effort. Given that metal-local effects dictate many transition-

metal complex properties, such an approach does not appear to be the most efficient way to 

provide new data about distinct coordination environments.  

 
Figure 2. Depiction of four strategies for transition-metal chemical space construction using 
discrete ligand pools (from left to right): hypothetical small ligand enumeration from the 
OHLDB; experimentally motivated, rule-based ring generation in Ref. 4; use of common 
experimental ligands in homoleptic and heteroleptic complexes; and extraction of molecular or 
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periodic materials from structural databases. Representative ligand structures are shown in ball-
and-stick representation with the complexed metal colored as: Cr in gray, Mn in mauve, Fe in 
brown, Co in purple.  
 

 Alternatively, enumerative strategies have been exploited in small molecule organic 

chemistry22 for chemical space exploration. The generated database (GDB)22 series has 

enumerated molecules up to discrete numbers of heavy (i.e., non-H) atom sizes under the 

constraints of obeying the octet rule and being in closed-shell singlet states with no net charge. 

Electronic structure properties of GDB sets with up to nine heavy atoms have been evaluated 

quantum mechanically giving rise to data sets38-39 that have been frequent targets for ML model 

training. Extension of enumerative strategies to candidate transition-metal complexes requires a 

distinct approach. First, the smallest non-trivial octahedral complex has at least seven heavy 

atoms due to the ligands and has more electrons than a typical organic molecule due to the metal 

center. Thus, to exhaustively generate a series of very small transition-metal complexes, 

individual ligands should be constrained to a small number (ca. one or two) of heavy atoms per 

metal-coordinating site (e.g., four heavy atoms in a bidentate ligand).25 Second, all GDB 

molecules are uncharged, closed shell singlets that obey the octet rule and many have fully 

saturated, sterically hindered bonding environments (e.g., methane and other alkanes). Such 

molecules are unlikely to be privileged as ligands for transition metal complexes either due to 

steric crowding that may prevent substantive metal coordination (e.g., methane) or due to the 

importance in transition metal chemistry of charged molecules (e.g., halide or hydroxyl ions) as 

well as those that violate the octet rule (e.g., NO2) or those with unsaturated bonding.  

 We recently introduced25 an enumerative strategy that relaxed typically-applied 

constraints (e.g., for the GDB) in generating ligands with one to four heavy (i.e., C, N, O, P, or 

S) atoms, giving more favorable scores to neutral and octet-obeying molecules but still allowing 
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for exceptions (Figure 3). Because the resulting ligands sampled a wider array of metal-

coordinating-atom elemental identities and hybridization states, DFT-calculated properties (i.e., 

the octahedral homoleptic ligand database, OHLDB25) of around 700 homoleptic complexes of 

these ligands with mid-row transition metals (i.e., Cr–Co) showed a broader range of spin-

splitting energies than those composed of common ligands (Figures 2 and 4). For similar reasons, 

enriching ML models with this training data improved ML model performance on larger 

transition-metal complexes from experimental databases40 that contained similar metal-local 

coordination to these OHLDB25 complexes (Figure 4). This improvement occurred in spite of the 

fact that many of the ligands in our set (e.g., complexes with a phosphorus nitride ligand41) 

would be difficult to isolate in experimental conditions, further highlighting the central 

importance of metal-local bonding.  

 
Figure 3. (left) Procedure for generating OHLDB ligands: enumerating all ligands, removing 
extreme cases, scoring and retaining top-scoring ligands, and simulating homoleptic M(II)/M(III) 
(M = Cr, Mn, Fe, or Co) octahedral complexes, as described in ref. 25. (right) Scores (i.e., M1 in 
gray circles, M2 in red squares, and B4 in blue triangles) of ligands. Scores for all three ligand 
types include: charge (ctot, top left); sterics (h, top middle); and octet (|v1-v2|, where v2 = 8 for M1 
ligands, top right). Two scores are only for M2 and B4: pol, the polarization measured by |c1| + 
|c2| (bottom, left) and bond, b, the 1-2 bond order (bottom, middle). Ligands with high charge 
and violation of the octet rule are penalized but not eliminated. While 71 of the OHLDB 
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molecules were in databases, most OHLDB ligands are not. Adapted with permission from ref. 
25. Copyright 2020 Royal Society of Chemistry. 
 

 
Figure 4. (left) Boxplots of M(II) (M = Cr, Mn, Fe, or Co) spin splitting energy, ΔEH-L, (in 
kcal/mol) for OHLDB complexes grouped by metal and by ligand-coordinating-atom (shown in 
inset legend). Each box indicates the median by a horizontal line, the interquartile range (IQR), 
and whiskers indicate 1.5× the IQR. The DB (white boxplot) indicates all ΔEH-L values from 
Refs. 1-2,31,36, regardless of coordinating atom. The difference in OHLDB values from the DB 
highlights increased diversity in properties in the OHLDB. (right) Swarm plot of RAC/ANN 
signed errors (in kcal/mol) from Ref. 3 on an out-of-sample 116 CSD structure data set3 
(original) and after retraining with OHLDB data in ref. 25 (retrained). The single most improved 
and worsened points are shown in green and red insets, respectively. The reduction in MAE 
(from original: 8.6 kcal/mol to retrained: 6.7 kcal/mol) highlights how enrichment of diverse 
metal-ligand coordination environments from OHLDB can improve model performance on 
larger CSD molecules. Adapted with permission from ref. 25. Copyright 2020 Royal Society of 
Chemistry. 
 
 Between the limits of enumerating potentially implausible ligands or of repurposing well-

studied ligands, we took yet another approach in recent work. To enumerate a space of nearly 2.8 

M candidate redox flow battery (RFB) redox couples, we designed bidentate ligands to form 

homoleptic transition-metal complexes (Figure 2). Motivated by the observation that many well-

known ligands in transition-metal chemistry consist of fused five- or six-membered rings, we 

devised a series of eight nitrogen- or oxygen-coordinating rings of that size, which we further 

permuted with in-ring changes to conjugation and addition of heteroatoms. These 38 distinct 

heterocycles were then fused to form nearly 800 bidentate core ligands that in turn were 

functionalized hierarchically with around 900 unique polar and bulky groups to create a space of 

700k unique ligands or 2.8 M transition metal complexes (Figures 2 and 5).  
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Figure 5. Approach for generating 2.8M homoleptic complex space for multi-objective RFB 
design in Ref. 4. Experimentally-motivated rings are modified to build a chemically reasonable, 
continuous and smooth design space of ligands, as shown in the flowchart at left. At right, 
example skeleton structure components and their assembly or modification coinciding with each 
step of the flowchart is shown to form a bidentate ligand and assembled complex (ball and stick 
structure). Adapted with permission from ref. 4. Copyright 2020 American Chemical Society. 
 
 
  In principle, these three strategies provide complementary information for enrichment of 

data-driven search and ML model development. While some properties (e.g., highest occupied 

molecular orbital, HOMO) cannot be expected to have similar distributions from the smallest 

OHLDB complexes to the large, bulky RFB complexes, we have found benefit to building 

models that generalize well across these sets.33 Indeed, we recently curated33 a subset of nearly 
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five thousand complexes derived from these three strategies (Figure 6). We observed improved 

ML model performance when using training data across the three (i.e., OHLDB, enumerative 

rings, and common ligands) strategies, even for application to a larger space of 187k theoretical 

complexes of common ligands (Figure 6).33  

 
Figure 6. (top) Properties of octahedral complexes in a merged data set of common ligands 
(MD1) and MD2 that includes the OHLDB from ref.  25 and large redox (LRX) RFB molecules 
from ref. 4, as curated in ref. 33. Bar graphs of the metal and spin state (HS: dark gray, LS: light 
gray) are shown along with kernel density estimation (KDE) of the size distribution of 
complexes and a clustered bar graph for the metal-coordinating atom identity (X indicates any 
halide) in MD1, LRX, and OHLDB. (bottom, left) Train and test set performance (MAE: 0.1-0.3 
eV) of a RAC-155/ANN trained on MD2 to predict the HOMO-LUMO gap. (bottom, right) 
Dimensionality reduction with t-distributed stochastic neighbor embedding42 (t-SNE) of ANN-
predicted HOMO-LUMO gaps (labeled ΔEg, colored as in inset colorbar) for a hypothetical 
space of 187k complexes made from common ligands. Adapted with permission from ref. 33. 
Copyright 2020 American Chemical Society. 
 
 The challenges of how to span known, synthesized chemical space and yet to reach into 

unexplored spaces is not specific to molecular transition-metal chemistry. Hypothetical materials 
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have been central to computational discovery43 of new metal-organic frameworks (MOFs). 

MOFs are reticular materials consisting of secondary building units (SBUs), linkers, and 

functional groups, which can rapidly give rise to a combinatorial explosion (Figure 2). By 

repurposing relatively few SBUs and linkers, hundreds of thousands of new hypothetical 

materials can be generated43. In addition to these hypothetical materials, thousands of MOFs 

have been synthesized and characterized experimentally.44 Using a series of metal-local and 

global materials featurizations with graph-based revised autocorrelations (RACs, see Sec. 3), we 

recently showed35 that ML models trained on hypothetical MOFs and on experimentally 

characterized MOFs will “see” different structure–property relationships (Figure 7). We 

determined that this difference arises in part due to the expected observation that many 

hypothetical materials have features (e.g., large pore sizes) that are unlikely to be synthetically 

accessible (Figure 7). More unexpectedly, we observed35 that hypothetical sets tended to lack 

diversity, completely omitting SBU chemistry that had previously been synthesized (Figure 7). 

Moving forward, any approach for spanning chemical space, whether for model exploitation 

(i.e., using a model where it is expected to perform well) or exploration (i.e., iteratively 

improving the model with new promising but uncertain data points, see Sec. 4), should make an 

effort to bridge the gap between the known and the unknown, and take measures to quantify this 

gap (Sec. 3). 
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Figure 7. (left) t-SNE on subsets of MOF RACs and geometric descriptors including: (top, left) 
pore geometry in purple, (top, right) metal chemistry RACs in red, (bottom, left) linker RACs in 
blue, and (bottom, right) functional group RACs. All hypothetical and experimentally-
characterized (i.e., CoRE-2019) datasets are shown in gray, whereas only hypothetical data is 
colored, highlighting the lack of diversity in metal chemistry in hypothetical sets. The radar 
charts show the three diversity metrics: variety (V), balance (B) and disparity (D), for the three 
databases. (right) Pie charts colored by feature subset as in left showing the feature importance 
for low-pressure CO2 adsorption and CH4 deliverable capacity for the CoRE-2019 database 
compared to BW-DB, highlighting how limited metal chemistry diversity in BW-DB leads to 
underestimation of its importance in adsorption properties. Adapted with permission from ref. 
35. Copyright 2020 Springer Nature. 
 

3. Defining Distance in Chemical Space. 

 Measuring similarity between chemical compounds (i.e., when features and/or properties 

are comparable) is essential in ML-accelerated chemical discovery because ML models primarily 

serve to map similar chemical compositions to similar observable properties. Similarity itself 

may be expressed as an understanding that materials with comparable features within a chosen 

chemical representation should have comparable properties, whereas those that are distinct may 

have very different properties. Nevertheless, adequate measures of similarity present unique 

challenges for open-shell transition-metal chemistry. When working with relatively small but 

diverse data sets in open-shell transition-metal chemistry, we showed31 that a carefully 

engineered feature set (i.e., selected based on intuition) of 25 mixed continuous discrete (metal)-

local (i.e., MCDL-2531) could enable predictive ANN training with errors about an order of 
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magnitude lower than could be achieved with a more standard approach of representing all atoms 

in the molecule equally (i.e., with a whole-molecule representation) to the model. In practical 

terms, this is a difference of predicting transition-metal complex properties to within a root mean 

squared error (RMSE) around 3 kcal/mol with the engineered feature set trained on fewer than 

1,000 diverse complexes31 versus 30 kcal/mol RMSE with whole-molecule features (Figure 8).45 

 
Figure 8. MCDL-25/ANN model predictions (ANN, blue bars) and computed (data, gray bars) 
spin-state splittings, ΔEH-L, from hybrid DFT (i.e., with B3LYP) in kcal/mol on M(II)(CO)6 
complexes, where M = Cr, Mn, Fe, Co, or Ni, from ref. 31. The error bars represent an estimated 
±1 standard deviation credible interval from the mean prediction, and brown dashed lines 
correspond to a ±5 kcal/mol range around zero ΔEH-L, corresponding to near-degenerate spin 
states. This model outperforms a whole molecule representation-trained model (not shown) by an 
order of magnitude. Adapted with permission from ref. 31. Copyright 2017 Royal Society of 
Chemistry. 
 
 When the heavily engineered feature sets enable simple models (e.g., regularized multiple 

linear regression, KRR, and shallow ANNs) to be predictive, the features themselves (i.e., how 

the molecule is represented to the model) in turn provide guidance about the most essential 

structural variations that give rise to property variations.1 Comparing the most important features 

to predict different properties provides guidance on when the properties may be independently 

tuned.1,30 The feature-engineering step need not be manual (i.e., from intuition alone). We have 

found it beneficial1,36 to start from systematic feature sets tailored for transition-metal chemistry 

known as revised autocorrelations1,21,46 (RACs), which are geometry-free products and 
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differences of heuristic properties (e.g., nuclear charge, electronegativity, or covalent radius) on 

the molecular graph that can be metal- or ligand-focused as well as products over the whole 

molecule. By carrying out automated feature selection on RACs (e.g., by selecting the set of 

RACs that give the lowest prediction error of the model), the most essential RACs to define this 

distance in chemical space are revealed.  

 Although graph-based (i.e., based only on chemical bonds, not on distance or position in 

space) and thus lacking any explicit 3D geometric information, RACs have been successfully 

used to learn properties as far ranging as gas adsorption in MOFs (see Figure 7);35 spin state, 

redox, and catalytic properties of transition-metal complexes (Figure 9);1,31,34,36,47 and even the 

spin-state-dependent metal–ligand bond length (Figure 9).31,48 RACs generally outperform both 

the ad hoc feature sets (i.e., MCDL-25) we first built, (i.e., RACs achieve < 1 kcal/mol mean 

absolute error on spin splitting vs 2-3 kcal/mol with MCDL-25) as well as the standard whole-

molecule descriptors we mentioned earlier (Figure 9). Systematically feature-selected RAC 

subsets recapitulate known design principles and reveal new ones (Figure 10). For instance, 

RACs selected on spin-state properties tend to be more metal-focused than those1,30 predicting 

bond lengths (Figure 10). Feature selection on the formation of high-valent metal-oxo catalytic 

intermediates and on spin-state prediction34 showed a number of features in common, 

confirming49 the importance of spin state in determining reactivity (Figure 10). Conversely, 

strongly non-local dependence of redox potential or frontier orbital properties36 reveals why 

frontier-orbital-based heuristics for metal-oxo formation50 should fail when studies encompass34 

a wide range of compounds (Figure 10). 
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Figure 9. Mean absolute error (MAE) for redox and ionization potential (top) in eV, low spin 
(LS) metal-ligand bond length (middle) in pm, and ΔEH-L (bottom) in kcal/mol. Comparisons are 
for the MCDL-25/ANN from ref. 31 along with KRR models trained with RAC-155, a feature-
selected (FS) RAC subset for each property from ref. 1, and for the best-overall-performing 
URAC 26 feature set in ref. 1. These results highlight how the systematic RAC-155 outperforms 
ad hoc MCDL-25. Adapted with permission from ref. 30. Copyright 2019 American Chemical 
Society. 
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Figure 10. (top) Schematic of proximity and character (electronic in blue to geometric in yellow) 
character of feature-selected subsets of RACs on a representative molecular abstraction for: 
HOMO-LUMO gap (top, left) from ref. 36 and spin splitting (URAC-26, top, right), metal-ligand 
bond length (bottom, left) and redox potential in aqueous solvent (bottom, right) all from ref. 1. 
Atom sizes are scaled relative to the metal by the number of RAC dimensions involving that 
atom (divided into 1st, 2nd, and 3rd coordination sphere). (bottom) Pie charts of features in ref. 1 
for predicting spin splitting (URAC-26, left) and metal-oxo formation (oxo-22, right) in ref. 34. 
Features are grouped by the most distant atoms: metal in blue; coordination sphere: 1st in red, 2nd 
in green, 3rd in orange; or global in gray. The property (i.e., electronic χ or Z and geometric S, T, 
or I) is indicated, and oxidation state (ox) and spin are assigned as metal-local. Adapted with 
permission from refs. 1, 34, and 36. Copyright 2017, 2018, and 2019 American Chemical 
Society. 
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 A key advantage of having intuitive representations for transition metal chemistry is the 

relationship between definitions of distance in chemical space (i.e., chemical similarity) and ML 

model performance. If distance between compounds in the engineered feature space is predictive 

of target property similarity, then compounds highly distant from available training data are 

those for which trained ML model performance will be eroded (Figure 11). This behavior is 

implicit in KRR models: a KRR model prediction on a test molecule is informed based on the 

most proximal compounds, controlled only by a single hyperparameter that controls how the 

model behaves (i.e., the kernel width) that determines how quickly the contribution to a test point 

prediction decays for more distant training points. If the test point is too distant, then the KRR 

model makes no prediction at all. In chemical discovery applications (Sec. 4), it may be 

preferable to have a model (e.g., an ANN) make predictions with a fixed uncertainty budget, 

rather than making no prediction like a KRR model would. In either application, if the feature 

space representation provides chemically useful measures of distance, we can avoid making 

model predictions for new points distant in feature space (i.e., model exploitation)2 or, 

alternatively, we can choose distant, promising points as new molecules to acquire for model 

exploration (i.e., by retraining the model in an approach known as active learning) applications4 

(Sec. 4).  

 
Figure 11. Dimensionality reduction with principal component (PC) analysis (PCA) for OHLDB 
complexes (magenta outlines, structure A inset), transition-metal complexes with common 
ligands (gray outlines, structure B inset), and RFB (cyan outlines, structure C inset) using a 
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whole molecule Coulomb matrix representation (left), RACs (middle), and latent space of a 
HOMO level ANN33 (right) colored by HOMO (colorbar, right). The whole molecule 
representation overemphasizes differences by complex size and elemental composition (i.e., A 
and B are much closer to each other than B and C), whereas distinct compounds are more evenly 
distributed in the RACs feature space (i.e., A, B, and C are more distant from each other). The 
latent space PCA represents the model’s interpretation of compounds, with more comparable 
distances of A, B, and C observed for both RACs and the latent space PCA. The PCA of the 
latent space highlights a slightly different data distribution than observed with RACs as a result 
of model training.  
 

 Although feature engineering or feature selection can lead to a subset of easily interpreted 

critical features, the popularity and flexibility of ANNs with numerous hidden layers (i.e., 

between the input layer where features are provided to the model and the output layer where the 

model makes predictions) motivate alternative approaches to uncertainty quantification (UQ). In 

these models, the action of the hidden layers can be interpreted as successive mathematical 

operations that discard uninformative features (i.e., carry out a form of automated feature 

selection) prior to the final layer at which point a linear mapping (i.e., as in multiple linear 

regression) typically occurs to the property space. Thus, rather than the feature space, the 

distance in the latent space3,51-52 (i.e., the last hidden layer) can be used as a UQ metric3 (Figures 

11 and 12). Indeed, the distance in latent space3 outperforms alternatives such as Monte Carlo 

dropout53 (i.e., uncertainty estimates from different predictions obtained by varying the nodes in 

ANNs) or widely employed54-57 ensembles (i.e., uncertainty estimates from different predictions 

obtained by varying which data is provided to the ANNs) in detecting high-error points, as are 

encountered in discovery applications, where these standard approaches are generally over-

confident (Figure 12). This distance in latent space can also be calibrated3 to property prediction 

units to provide property-unit-based error bars (Figure 12). For classification tasks, we have 

shown32 that a closely related metric, the latent space entropy,32 can capture both distance to 

available training data as well as proximity only to points from a single class that both are 
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important in ensuring a model knows how to assign the relevant class. Thus, both feature space 

and latent space distance are suitable tools for measuring the similarity of new compounds to 

known compounds (Figure 12).  What remains is to consider how to best navigate transition 

metal chemical space (Sec. 4).  

 
Figure 12. (top, left) Schematic of an ANN annotated with: feature space distance on a t-SNE 
map of data in the input layer (in orange), the latent space distance (in green), Monte-Carlo 
dropout (mc-dropout, i.e., zeroed out nodes), and ensemble models (i.e., varied model weights). 
(top, right) Demonstration of adjusting latent space distance cutoffs on a RAC/ANN for 
predicting the spin splitting on an 116-molecule CSD set curated in ref. 3.  (bottom) Comparison 
of the calibrated latent space distance, mc-dropout, and ensemble standard deviation (std. dev.) 
prediction of errors (in kcal/mol) vs model error over 116-molecule CSD set. The one (two) std. 
dev. bound is shown in green (yellow), and points outside both are shown in red with 
percentages of each in inset. Latent space distance performs best, monotonically decreasing 
errors and bound more (92%) points. Adapted with permission from ref. 3. Copyright 2019 
Royal Society of Chemistry. 
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4. Accelerating Discovery. 

 Machine learning (e.g., ANN or KRR) models trained on tailored representations1,31 

predict transition-metal complex properties with low errors (ca. 1-3 kcal/mol) with respect to the 

ground truth training data, e.g., from DFT calculations1,31,34,36,47-48 or classical35 simulation 

(Figure 9). Once trained, these ML models can be evaluated in a fraction of a second where the 

direct calculation would have required minutes to days. The promise of these savings in 

computational effort motivates model exploitation in the discovery of new materials with 

targeted properties, i.e., by applying a trained model on a large pool of diverse compounds (Sec. 

2). A particular challenge for transition-metal chemistry is that the variation in elements, ligand 

chemistry, spin, and oxidation state is large enough that models trained on small data sets can be 

expected to erode when applied to diverse chemistry (Figure 12).3-4,31 In such cases, it is still 

possible to exploit a model (i.e., use the model where it is confident) for property optimization 

but this should be done in conjunction with an uncertainty budget (Sec. 3) to avoid introducing 

large errors in chemical discovery (Figure 12).  

 To balance finding an optimal property from a large number of candidate complexes with 

an uncertainty budget on model error, we first combined2 the two in the fitness function (i.e., the 

measure of what a good compound is) for an evolutionary algorithm (Figure 13). Genetic 

algorithms (GAs) are a natural and popular8,58-61 choice for discrete optimization of transition-

metal complex properties, where genes are assigned to encode a metal and ligands, and 

properties are optimized by selecting candidates from a discrete design space.2,8,34,36,60-61 

Although typically employed with physics-based (i.e., DFT or SQM) models8,60-61, we showed2 

that ANNs trained on the feature-engineered MCDL-25 descriptors could be used with a GA to 

optimize properties of spin crossover (SCO) complexes without eroding ANN model accuracy 
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(Figure 14). Here, the composite fitness function favored complexes with degenerate spin states 

but penalized complexes with high feature space distance to training data to avoid making 

predictions where the ANN would be incorrect. This approach was used to explore a space of 

5,600 theoretical compounds of which only a small number (2%) had been previously seen by 

the model2 (Figures 13 and 14). While large feature space distances were penalized, the GA 

optimization was still permitted to explore significant differences in chemistry and discover new 

compounds (e.g., a change of ligand from a small water molecule to a larger furan, Figure 14).  

Figure 13. (left) Model exploitation with a genetic algorithm composite fitness function of 
optimal properties, P, and feature or latent space distance, d. (right) Model exploration for multi-
objective optimization with efficient global optimization using the 2D expected improvement 
criterion. Calculated points are shown as solid circles with black outline, predicted properties are 
shown as shaded regions or circles with gray outline, and the Pareto front of computed values is 
shown as a solid line (the red line is the generation after the blue line).  
 

 
Figure 14. DFT ΔEH-L vs. MCDL-25/ANN for 50 complexes obtained from a distance-
controlled GA search of a 5600 complex space for SCOs grouped by metal (Cr gray, Mn green, 
Fe red, and Co blue) and feature space distance (near in circles, mid in squares, and far in 
triangles). A parity line is shown (gray, dotted), and |ΔEH-L| < 5 kcal/mol is shaded light blue. 
Over 2/3 of complexes are confirmed SCOs with DFT after ANN selection. (right, top) Error 
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histogram of ANN predictions. (right, bottom) Representative complexes corresponding to labels 
at left. Adapted with permission from ref. 2. Copyright 2018 American Chemical Society. 
 
 
 Overall, this approach ensured limited errors on discovered compounds to only about 

1.5–2x (ca. 4.5 kcal/mol) the original test set error, and over two-thirds of candidate SCO 

complexes predicted by the ANN were validated to be SCO complexes with DFT (Figure 14).2 

We also showed how this approach could be used to find optimized HOMO–LUMO gaps from 

10k candidate transition-metal complexes,36 achieving average ANN-targeted values within 

chemical accuracy of the DFT-validated band gaps (ANN: 4.00 eV vs DFT: 3.97 eV). We also 

showed34 that latent space (i.e., from the last hidden layer of the ANN instead of the feature 

space input layer) distance could be used similarly in a composite GA fitness function, in this 

case enabling the error-controlled discovery of single-site catalysts with counterintuitive 

properties.34  

 While uncertainty quantification (i.e., through feature space or latent space distance 

measures) can control model error in chemical discovery, model exploitation-based approaches 

require extensive calculations to generate data and train a model prior to its application in the 

design space (i.e., where we’d like to discover new compounds). When design principles are 

truly unknown, the most promising materials may be significantly distant from the original 

training data (Figures 4 and 12). Therefore, a trained ML model may not be predictive of these 

new spaces and a UQ-controlled optimization approach may not visit the most fruitful regions of 

the design space. As an alternative, model exploration through active learning can take 

advantage of these high uncertainty points in chemical discovery.62-68 In this approach, the points 

judged to be simultaneously the most promising and the most uncertain are sought out for further 

characterization (here, with DFT) and then used to iteratively retrain the model.  



25 

 

 We recently demonstrated4 the power of model exploration to accelerate the discovery of 

new redox couples for redox flow batteries (RFBs) from a design space of nearly three million 

candidates (Figures 5, 13, and 15). The candidate complexes in our design space were large and 

bulky to prevent crossover in RFBs69 and thus did not resemble any training data we had 

generated in prior redox applications (Figures 2 and 5).1,36,47 We sought to identify how to 

improve RFB candidate material solubility in polar solvents while increasing their redox 

potentials.4 These two properties are challenging to optimize simultaneously because redox 

potential is maximized by minimizing size (e.g., as we learned from RACs structure-property 

maps,1,30 see Sec. 3 and Figure 10), but solubility can be expected to be increased by adding 

polar functional groups and increasing size. Thus, we employed an efficient global optimization 

(EGO) approach with the 2D expected improvement (EI) criterion70-71 to ensure sampling along 

the Pareto front defined by the set of complexes with optimal solubility and redox properties4 

(Figures 13 and 15). The EGO approach with 2D-EI identifies the simultaneously most 

promising (i.e., beyond the prior calculated Pareto front) but most uncertain points, balancing the 

likelihood of obtaining new lead compounds with also acquiring data that can improve the 

model. Although active learning with an approach like EGO is most naturally carried out with 

Gaussian process regression (GPR), a model similar to a KRR but one that has built-in UQ 

estimation,72 we showed that on our data sets the errors were lowest for a multitask (i.e., that 

predicts solubility and redox at the same time) ANN with UQ from calibrated3 latent space 

distances (Figure 12),4 leading to faster identification of the best RFB leads.  
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Figure 15. (Left) Redox potential (ΔGox(sol), in eV) and solubility (logP, unitless) for complexes 
from EGO with 2D-EI using a multitask ANN in ref. 4, colored as in in inset legend. The final 
Pareto front is indicated by a red line with three representative complexes labeled and shown at 
top: the highest ΔGox(sol) (A), the balanced trade-off (B), and the highest logP (C). (Right) 
Distribution of ΔGox(sol) and logP for each generation (as in inset legend) alongside a random 
sample (gray symbols). EGO/2D-EI yields a 500-fold acceleration over random search. Adapted 
with permission from ref. 4. Copyright 2020 American Chemical Society. 
 

 In only five generations of EGO with 2D-EI, the number of complexes expected by the 

ANN to exceed the Pareto front rapidly diminished,4 and all of the DFT-validated points on the 

ultimate Pareto front were sampled from the final generations of the optimization (Figure 15). 

Given the high cost of each generation, corresponding to hundreds of DFT calculations, we 

elected to terminate our optimization once the ANN lacked confidence it could improve 

significantly (i.e., at the fifth generation). Importantly, design principles were convergent in this 

small number of generations: the best materials all were high-spin Mn complexes with oxygen-

coordinating ligands that contained a sulfur heteroatom in a five- or six-membered ring paired 
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with small polar groups that increased solubility without sacrificing high redox potentials (Figure 

15). Even taking into account acceleration through parallelization of DFT calculations, the 2D-EI 

approach achieved new leads in around five weeks where a fully random search would have 

required decades to reach the same conclusions (Figure 15). For higher-dimensional searches 

(i.e., optimizing three or more properties simultaneously), the acceleration benefits will be even 

greater because this acceleration generally is multiplicative in each dimension.62-64 While 

impressive, the acceleration achieved by ML models for navigating transition metal chemical 

space that we have demonstrated thus far can be improved further through developments in 

representation and improvements in ML model architecture. 

5. Summary. 

 Although the importance of discovery and design of new functional materials and 

catalysts is undisputed, large-scale discovery efforts had been hampered by the complexity of 

describing the electronic properties of open-shell transition metals. In this Account, we described 

the path we charted to overcome the limitations imposed by this complexity. Starting from the 

first ML models and representations for the prediction of open-shell transition-metal complex 

properties, we predicted spin splitting, redox potential, and structure in seconds instead of the 

days that computational chemistry (i.e., DFT) would have required. This paradigm shift was 

made possible by recognition of the importance of near-sighted, metal-local coordination 

environments to transition-metal complex properties as well as the utility of geometry-free 

representations to sidestep the lack of accurate structural predictions. Beyond speed, we showed 

how feature selection provided new ways to develop and interpret structure–property 

relationships, including the identification of opportunities for orthogonal property design and the 

interpretation of the robustness of data set diversity.  
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 Accelerated discovery of transition-metal complexes requires not just fast ML models but 

also an approach to detect when model prediction accuracy will erode in new regions of 

transition-metal chemical space. Distance-based approaches, whether in model latent space or in 

carefully engineered feature space, provided intuitive measures of just how far is too far for 

model extrapolation. With all of these pieces together, we showed how ML models could be 

exploited or adaptively retrained to tackle the large-scale exploration of transition-metal 

chemical space. In practical terms, these artificial intelligence tools enabled multi-objective 

optimization from ML-model assessments of large, multi-million compound spaces in minutes to 

produce first-principles, DFT-validated design leads in weeks instead of decades. 

 From this progress, a number of natural next steps emerge. The approach we developed is 

general across inorganic materials and properties. The benefits of accelerated multi-objective 

optimization will increase with search dimensionality. Thus, a key target will be addressing 

outstanding challenges in catalysis, where computational design of selective, active, stable, and 

earth abundant materials has yet to be realized. A closely related concern is the realism that 

models trained on DFT predictions can provide in such challenging spaces. We have recently 

demonstrated33 how to identify regions of chemical space that are “DFT-safe” islands. Key 

questions that remain are if derived structure–property relationships are more or less sensitive to 

the DFT functional that generated them than individual predictions, as well as how to best 

incorporate beyond-DFT methods when DFT is insufficiently accurate for design. Furthermore, 

some laboratory conditions and properties may still be too challenging to simulate. Extraction of 

experimental data from the literature, as has been demonstrated in inorganic materials 

synthesis,73-74 can be expected to be fruitful. We have recently shown48 that the geometry-free 

nature of RACs are particularly amenable to ML model comparison to literature data, but 
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challenges remain in ascertaining the availability, reliability, and mapping of extracted data to a 

single chemical structure. With ever-improving tools at our fingertips, computational exploration 

of transition-metal chemical space is poised to address some of the most pressing technological 

challenges.  
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